ECM spreading behaviour on micropatterned TiO2 nanotube surfaces.

نویسندگان

  • Andreas Pittrof
  • Jung Park
  • Sebastian Bauer
  • Patrik Schmuki
چکیده

By electrochemical anodization, highly ordered nanotubular TiO(2) structures were formed on titanium surfaces with diameters of 15 and 100 nm. In previous work we showed that 15 nm tubes strongly enhanced adhesion and vitality of many cell types, whereas on 100 nm diameter tubes the induction of apoptosis was observed. In the present work we produce mixed (15 nm contrasted with 100 nm) nanotube microstructures that combine highly defined micro- and nanostructures using a photolithographic approach to achieve a direct comparison of adhesion and spreading of mesenchymal stem cells on different diameter nanotubes present on a single surface. On these coupled different nanoscale surfaces mesenchymal stem cell adhesion is initially favoured on 15 nm tube areas but, with time, a gradient in cell number and shape to the "unfavourable" regions of the substrate (100 nm tubes) can be observed. This can be explained by cells on the "favourable" 15 nm regions that strongly produce and shed extracellular matrix onto the "unfavourable" locations. These findings contribute to the design of cell guiding surfaces, but also demonstrate the need for a long-range defined homogeneous order when studying cell behaviour on nanostructured surfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion.

Cell adhesion, spreading and migration require the dynamic formation and dispersal of contacts with the extracellular matrix (ECM). In vivo, the number, availability and distribution of ECM binding sites dictate the shape of a cell and determine its mobility. To analyse the geometrical limits of ECM binding sites required for cell attachment and spreading, we used microcontact printing to produ...

متن کامل

Adhesion of osteoblasts to a vertically aligned TiO2 nanotube surface.

The adhesion of cells to vertically aligned TiO2 nanotubes is reviewed. The attraction between a negatively charged nanotube surface and a negatively charged osteoblast is facilitated by charged protein-mediators like proteins with a quadrupolar internal charge distribution, fibronectin and vitronectin. It is shown that adhesion and spreading of osteoblasts on vertically aligned TiO2 nanotube s...

متن کامل

Micropatterned surfaces to study hyaluronic acid interactions with cancer cells.

Cancer invasion and progression involves a motile cell phenotype, which is under complex regulation by growth factors/cytokines and extracellular matrix (ECM) components within the tumor microenvironment. Hyaluronic acid (HA) is one stromal ECM component that is known to facilitate tumor progression by enhancing invasion, growth, and angiogenesis(1). Interaction of HA with its cell surface rece...

متن کامل

Micropatterned surfaces for control of cell shape, position, and function.

The control of cell position and function is a fundamental focus in the development of applications ranging from cellular biosensors to tissue engineering. Using microcontact printing of self-assembled monolayers (SAMs) of alkanethiolates on gold, we manufactured substrates that contained micrometer-scale islands of extracellular matrix (ECM) separated by nonadhesive regions such that the patte...

متن کامل

Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion

Competition occurs between the osteoblasts in regional microenvironments and pathogens introduced during surgery, on the surface of bone implants, such as joint prostheses. The aim of this study was to modulate bacterial and osteoblast adhesion on implant surfaces by using a nanotube array. Titanium oxide (TiO2) nanotube arrays, 30 nm or 80 nm in diameter, were prepared by a two-step anodizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biomaterialia

دوره 8 7  شماره 

صفحات  -

تاریخ انتشار 2012